Le cariche elettriche consentono di accendere le lampadine e di far funzionare gli elettrodomestici, ma forse non tutti sanno che sono anche alla base di molti processi che regolano e controllano il funzionamento del ‘mattone’ fondamentale della vita: la cellula. Una ricerca condotta da un team di giovani ricercatori, svolta a Pozzuoli presso l’Istituto di scienze applicate e sistemi intelligenti (Isasi-Cnr), svela una nuova e originale metodologia per realizzare pellicole di plastica elettrizzate, dette ‘elettreti’. La ricerca è stata pubblicata su Advanced Materials. L’elettreto è noto sin dagli anni ’20 ed è, in pratica, un materiale isolante che ha una carica elettrica permanente. Può essere considerato l’equivalente elettrico di un magnete. Solitamente è ottenuto riscaldando la plastica a una temperatura molto alta (fino a 100 C), tecnicamente detta ‘temperatura di transizione vetrosa’, che è in grado di ‘scongelare’ le molecole rendendole libere di muoversi. A questo punto una differenza di potenziale, anch’essa molto alta (fino a 10.000 volt), orienta le molecole nella plastica e, grazie a un raffreddamento repentino, le molecole si ri-congelano in una configurazione in cui sono tutte allineate tra loro. Il risultato è una plastica elettrizzata che ha la superficie carica tutta positivamente o tutta negativamente. “In questo studio, invece, la pellicola è elettrizzata tramite una tecnica innovativa, molto rapida ed efficace, che usa esclusivamente il calore, quindi senza ricorrere a generatori e circuiti elettrici, e che produce pellicole bipolari, cioè con un’alternanza di cariche di segno positivo e negativo sulla stessa superficie”, spiega Simonetta Grilli di Isasi-Cnr e team-leader del progetto.”In questo modo è possibile realizzare dei veri e propri disegni di cariche elettriche su pellicole di plastica. La chiave del metodo sta nell’usare per la prima volta un materiale di supporto, detto piroelettrico, che genera una differenza di potenziale spontaneamente quando e’ riscaldato”. I risultati presentati nell’articolo dimostrano come sia possibile elettrizzare pellicole di plastica anche molto sottili (fino alla millesima parte del millimetro) ma in modo talmente forte da catturare oggetti molto piccoli di materia sia inerte sia vivente, come le cellule. “Lo studio biologico presentato nell’articolo dimostra che queste pellicole elettrizzate sono in grado di influenzare adesione e proliferazione di particolari cellule cancerose del sistema nervoso (neuroblastomi). Lo studio del comportamento cellulare su queste membrane innovative potrà aiutare a capire meglio, in campo biomedico, i meccanismi fondamentali che regolano la crescita dei tumori al cervello”, conclude la ricercatrice. “Le cariche elettriche impresse nella pellicola sono in pratica permanenti e possono essere realizzate con geometrie e dimensioni che sono su scala micrometrica, cioè fino a 1 milionesimo di metro”, afferma Pietro Ferraro, direttore di Isasi-Cnr. “Grazie alle proprietà delle plastiche – tra cui economicità, flessibilità, modellabilità strutturale, biodegradabilità e trasparenza – queste pellicole elettrizzate potranno avere in futuro impieghi anche in altri settori. Per esempio, se opportunamente funzionalizzate, per fabbricare tessuti con generatori di energia praticamente invisibili, utili per ricaricare il proprio dispositivo elettronico portatile quale uno smartphone o un tablet. Se realizzate con plastiche biocompatibili e biodegradabili, per realizzare cerotti cicatrizzanti ma anche filtri in grado di catturare agenti patogeni quali i batteri”. La ricerca è stata possibile grazie alla natura fortemente interdisciplinare del team di giovani ricercatori costituito da fisici, ingegneri elettronici e chimici farmaceutici
Post correlati
-
Diabete, siglato un “Action Paper” per un accesso equo, tempestivo e sostenibile alle nuove tecnologie
Facebook WhatsApp LinkedInGarantire alle persone con diabete, ma anche agli specialisti che... -
Depressione: diagnosi efficace con metodo multimodale basato sull’IA
Facebook WhatsApp LinkedIn Un team della Kaunas University of Technology (Lituania), guidato... -
Depressione, un labirinto da cui si può uscire
Facebook WhatsApp LinkedIn La depressione ha ancora un lato oscuro, che mette...